Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

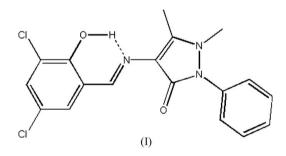
Ding-Ben Chen and Ling Huang*

Department of Chemistry, Taizhou University, Taizhou 317000, People's Republic of China

Correspondence e-mail: huangltzu@yahoo.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.004 Å R factor = 0.047 wR factor = 0.135 Data-to-parameter ratio = 12.2

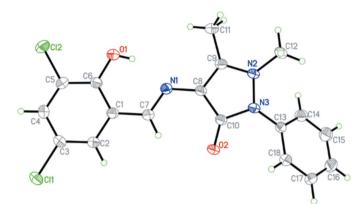

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

4-{[(1*E*)-(3,5-Dichloro-2-hydroxyphenyl)methylene]amino}-1,5-dimethyl-2-phenyl-3*H*-pyrazol-3(2*H*)-one

The crystal structure of the title compound, $C_{18}H_{15}Cl_2N_3O_2$, shows a strong intramolecular $O-H\cdots N$ hydrogen bond $[N\cdots O = 2.598 (3) \text{ Å}, O-H = 0.81 (3) \text{ Å}, H\cdots N = 1.86 (3) \text{ Å}$ and $O-H\cdots N = 152 (3)^\circ]$, which leads to the existence of a phenol-imine tautomer.

Comment

Great interest has been devoted to the preparation and study of the Schiff bases derived from salicylaldehyde due to their tautomeric structure (Salman *et al.*, 1991), fluorescent (Morishige *et al.*, 1980), and thermo- and photochromic properties (Barbara *et al.*, 1980; Cohen *et al.*, 1964). In a search for new analytical reagents, we have synthesized some compounds of substituted salicylaldehyde with 4-aminoantipyrine (Huang *et al.*, 2005). We report here the synthesis and crystal structure of the title compound, (I).


All the bond distances and angles are normal and agree with the corresponding values found in a similar compound, *viz*. 4-[(2-hydroxy-3-methoxybenzylidene)amino]-1,5-dimeth-yl-2-phenyl-1*H*-pyrazol-3(2*H*)-one (Diao *et al.*, 2005). There is an intramolecular $O-H\cdots N$ hydrogen bond (Table 2); the compound is in the phenol–imine form, as in 4-{[(1*E*)-(2-hydroxyphenyl)methylidene]amino}-1,5-dimethyl-2-phenyl-2,3-dihydro-1*H*-pyrazol-3-one [N1 \cdots O1 = 2.607 (3) Å, O1–H1 = 0.97 (3) Å, H1 \cdots N1 = 1.71 (3) Å and O1–H1 \cdots N1 = 153 (2)°; Hökelek *et al.*, 2001].

Experimental

3,5-Dichlorosalicylaldehyde was prepared according to the method of Sukuzi & Takashi (1983). Ethanol solutions of 3,5-dichlorosalicylaldehyde (10 mmol, 1.70 g) and 4-aminoantipyrine (10 mmol, 2.03 g) were mixed and refluxed on a water bath for 2 h. After cooling, the separated precipate was filtered off, washed and recrystallized from methanol (yield: 83%; m.p. 498.6–499.1 K). IR (KBr, cm⁻¹): ν_{max} 3430.5, 1664.5, 1592.1, 1452.3, 1356.8, 1290.3, 1136.0, 766.7. ¹H NMR (200 MHz, CDCl₃): δ 14.25 (1H), 9.72 (1H), 7.18–7.59 (7H), 3.21 (3H), 2.42 (3H).

© 2006 International Union of Crystallography All rights reserved Received 24 November 2005

Accepted 10 January 2006

Figure 1

The structure of compound (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.

 $D_r = 1.451 \text{ Mg m}^{-3}$

Cell parameters from 3109

Mo $K\alpha$ radiation

reflections

 $\theta=1.3{-}25.3^\circ$

 $\mu = 0.39 \text{ mm}^{-1}$

T = 293 (2) K

Block, orange

 $R_{\rm int} = 0.031$

 $\theta_{\rm max} = 25.3^\circ$

 $h = -6 \rightarrow 8$

 $k = -9 \rightarrow 9$

 $l = -36 \rightarrow 35$

 $0.22 \times 0.17 \times 0.16 \text{ mm}$

3109 independent reflections

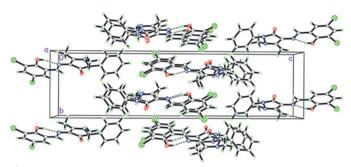
2510 reflections with $I > 2\sigma(I)$

Crystal data

 $\begin{array}{l} C_{18}H_{15}Cl_2N_3O_2\\ M_r = 376.23\\ \text{Monoclinic, } P2_1/n\\ a = 7.0146 \ (6) \ \text{\AA}\\ b = 8.0466 \ (7) \ \text{\AA}\\ c = 30.510 \ (3) \ \text{\AA}\\ \beta = 90.921 \ (2)^{\circ}\\ V = 1721.9 \ (3) \ \text{\AA}^3\\ Z = 4 \end{array}$

Data collection

Siemens SMART CCD areadetector diffractometer ω and φ scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{min} = 0.923, T_{max} = 0.939$ 8818 measured reflections


Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.067P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.047$	+ 0.3379P]
$wR(F^2) = 0.136$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.14	$(\Delta/\sigma)_{\rm max} = 0.001$
3109 reflections	$\Delta \rho_{\rm max} = 0.33 \text{ e } \text{\AA}^{-3}$
255 parameters	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$
H atoms treated by a mixture of	Extinction correction: SHELXL97
independent and constrained refinement	Extinction coefficient: 0.0028 (13)

Table 1

Selected g	geometric	parameters	(Å,	°).
------------	-----------	------------	-----	-----

Cl1-C3	1.744 (3)	N1-C8	1.395 (3)
Cl2-C5	1.736 (3)	N2-N3	1.412 (3)
O1-C6	1.340 (3)	N3-C10	1.403 (3)
O2-C10	1.233 (3)		
C7-N1-C8	120.7 (2)	O1-C6-C5	120.4 (2)
C2-C3-C4	121.3 (2)	O1-C6-C1	121.3 (2)

Figure 2

The packing diagram of (I), viewed down the *a* axis. Dashed lines indicate hydrogen bonds.

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1-H1A\cdots N1$	0.81 (3)	1.86 (3)	2.598 (3)	152 (3)

The hydroxy H atom (H1A) and the methyl H atom were positioned from a difference map, refined several cycles then fixed at a distance of 0.80 Å; the methyl H atoms on C11 and C12 were located in a Fourier synthesis and refined freely. The remaining H atoms were were positioned geometrically and treated as riding, at distances of 0.93 (CH) and 0.96 Å (CH₃) and with $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

The authors thank Taizhou University for research grant No. 05QN12.

References

- Barbara, P. F., Rentzepis, P. M. & Brus, L. E. (1980). J. Am. Chem. Soc. 102, 2786–2791.
- Bruker (2002). SMART (Version 5.62), SAINT (Version 6.02) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Winsonsin, USA.
- Cohen, M. D., Schmidt, G. M. J. & Flavin, S. (1964). J. Chem. Soc. pp. 2041– 2051.
- Diao, C.-H., Fan, Z. & Yu, M. (2005). Acta Cryst. E61, o3271-o3272.
- Hökelek, T., Işiklan, M. & Kılıç, Z. (2001). Acta Cryst. C57, 117-119.
- Huang, L. & Chen, D.-B. (2005). Acta Cryst. E61, 04169-04170.

Morishige, K. (1980). Anal. Chim. Acta, 121, 301-308.

- Salman, S. R., Farrant, R. D. & Lindon, J. C. (1991). Spectrosc. Lett. 24, 1071– 1078.
- Sheldrick, G. M. (1996). SHELXL93. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sukuzi, Y. & Takashi, H. (1983). Chem. Pharm. Bull. 31, 1751-1753.