Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ding-Ben Chen and Ling Huang*

Department of Chemistry, Taizhou University, Taizhou 317000, People's Republic of China

Correspondence e-mail: huangItzu@yahoo.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.047$
$w R$ factor $=0.135$
Data-to-parameter ratio $=12.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
4-\{[(1E)-(3,5-Dichloro-2-hydroxyphenyl)-methylene]amino\}-1,5-dimethyl-2-phenyl$3 H$-pyrazol-3(2H)-one

 shows a strong intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond $[\mathrm{N} \cdots \mathrm{O}=2.598(3) \AA, \mathrm{O}-\mathrm{H}=0.81$ (3) $\AA, \mathrm{H} \cdots \mathrm{N}=1.86$ (3) \AA and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}=152(3)^{\circ}$], which leads to the existence of a phenol-imine tautomer.
Comment

Great interest has been devoted to the preparation and study of the Schiff bases derived from salicylaldehyde due to their tautomeric structure (Salman et al., 1991), fluorescent (Morishige et al., 1980), and thermo- and photochromic properties (Barbara et al., 1980; Cohen et al., 1964). In a search for new analytical reagents, we have synthesized some compounds of substituted salicylaldehyde with 4-aminoantipyrine (Huang et al., 2005). We report here the synthesis and crystal structure of the title compound, (I).

(I)

All the bond distances and angles are normal and agree with the corresponding values found in a similar compound, viz. 4-[(2-hydroxy-3-methoxybenzylidene)amino]-1,5-dimeth-yl-2-phenyl-1 H-pyrazol-3(2H)-one (Diao et al., 2005). There is an intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond (Table 2); the compound is in the phenol-imine form, as in $4-\{[(1 E)-(2-$ hydroxyphenyl)methylidene]amino\}-1,5-dimethyl-2-phenyl-2,3-dihydro-1 H -pyrazol-3-one $[\mathrm{N} 1 \cdots \mathrm{O} 1=2.607$ (3) \AA, $\mathrm{O} 1-$ $\mathrm{H} 1=0.97(3) \AA, \mathrm{H} 1 \cdots \mathrm{~N} 1=1.71$ (3) \AA and $\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{~N} 1=$ 153 (2) ${ }^{\circ}$; Hökelek et al., 2001].

Experimental

3,5-Dichlorosalicylaldehyde was prepared according to the method of Sukuzi \& Takashi (1983). Ethanol solutions of 3,5-dichlorosalicylaldehyde ($10 \mathrm{mmol}, 1.70 \mathrm{~g}$) and 4-aminoantipyrine (10 mmol , 2.03 g) were mixed and refluxed on a water bath for 2 h . After cooling, the separated precipate was filtered off, washed and recrystallized from methanol (yield: 83%; m.p. $498.6-499.1 \mathrm{~K}$). IR (KBr , cm^{-1}): $v_{\max } 3430.5,1664.5,1592.1,1452.3,1356.8,1290.3,1136.0$, 766.7. ${ }^{1}$ H NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.25(1 \mathrm{H}), 9.72(1 \mathrm{H}), 7.18-7.59$ (7H), $3.21(3 \mathrm{H}), 2.42(3 \mathrm{H})$.

Figure 1
The structure of compound (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}$	$D_{x}=1.451 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=376.23$	Mo $K \alpha$ radiation
Monoclinic, $P 2_{\downarrow} / n$	Cell parameters from 3109
$a=7.0146(6) \AA$	\quad reflections
$b=8.0466(7) \AA$	$\theta=1.3-25.3^{\circ}$
$c=30.510(3) \AA$	$\mu=0.39 \mathrm{~mm}^{-1}$
$\beta=90.921(2)^{\circ}$	$T=293(2) \mathrm{K}$
$V=1721.9(3) \AA^{3}$	Block, orange
$Z=4$	$0.22 \times 0.17 \times 0.16 \mathrm{~mm}$

Data collection

Siemens SMART CCD areadetector diffractometer ω and φ scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.923, T_{\text {max }}=0.939$
8818 measured reflections

3109 independent reflections
2510 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.031$
$\theta_{\text {max }}=25.3^{\circ}$
$h=-6 \rightarrow 8$
$k=-9 \rightarrow 9$
$l=-36 \rightarrow 35$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.136$
$S=1.14$
3109 reflections
255 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.067 P)^{2}\right. \\
& +0.3379 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \text { 。 } \\
& \Delta \rho_{\max }=0.33 \mathrm{e} \mathrm{~A}^{-3} \\
& \Delta \rho_{\min }=-0.26 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0028 \text { (13) }
\end{aligned}
$$

Table 1

Selected geometric parameters ($\left({ }^{\circ},^{\circ}\right)$.

$\mathrm{Cl} 1-\mathrm{C} 3$	$1.744(3)$	$\mathrm{N} 1-\mathrm{C} 8$	$1.395(3)$
$\mathrm{Cl} 2-\mathrm{C} 5$	$1.736(3)$	$\mathrm{N} 2-\mathrm{N} 3$	$1.412(3)$
$\mathrm{O} 1-\mathrm{C} 6$	$1.340(3)$	$\mathrm{N} 3-\mathrm{C} 10$	$1.403(3)$
$\mathrm{O} 2-\mathrm{C} 10$	$1.233(3)$		
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8$	$120.7(2)$	$\mathrm{O} 1-\mathrm{C} 6-\mathrm{C} 5$	$120.4(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$121.3(2)$	$\mathrm{O} 1-\mathrm{C} 6-\mathrm{C} 1$	$121.3(2)$

Figure 2
The packing diagram of (I), viewed down the a axis. Dashed lines indicate hydrogen bonds.

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1-H1A $\cdots \mathrm{N} 1$	$0.81(3)$	$1.86(3)$	$2.598(3)$	$152(3)$

The hydroxy H atom (H1A) and the methyl H atom were positioned from a difference map, refined several cycles then fixed at a distance of $0.80 \AA$; the methyl H atoms on C 11 and C 12 were located in a Fourier synthesis and refined freely. The remaining H atoms were were positioned geometrically and treated as riding, at distances of $0.93(\mathrm{CH})$ and $0.96 \AA\left(\mathrm{CH}_{3}\right)$ and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

The authors thank Taizhou University for research grant No. 05QN12.

References

Barbara, P. F., Rentzepis, P. M. \& Brus, L. E. (1980). J. Am. Chem. Soc. 102, 2786-2791.
Bruker (2002). SMART (Version 5.62), SAINT (Version 6.02) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Winsonsin, USA.
Cohen, M. D., Schmidt, G. M. J. \& Flavin, S. (1964). J. Chem. Soc. pp. 20412051.

Diao, C.-H., Fan, Z. \& Yu, M. (2005). Acta Cryst. E61, o3271-o3272.
Hökelek, T., Işiklan, M. \& Kılıç, Z. (2001). Acta Cryst. C57, 117-119.
Huang, L. \& Chen, D.-B. (2005). Acta Cryst. E61, o4169-o4170.
Morishige, K. (1980). Anal. Chim. Acta, 121, 301-308.
Salman, S. R., Farrant, R. D. \& Lindon, J. C. (1991). Spectrosc. Lett. 24, 10711078.

Sheldrick, G. M. (1996). SHELXL93. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Sukuzi, Y. \& Takashi, H. (1983). Chem. Pharm. Bull. 31, 1751-1753.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

